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Traveling-Wave-Type Gravitational Soliton 
Solutions 
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With the traveling-wave condition of Yan and Ge, the traveling-wave-type 
gravitational two-soliton solutions are generated from a flat metric by using the 
inverse scattering method (ISM) of Belinsky and Zakharov (BZ). It is shown 
that when the traveling-wave condition is added to the condition required by the 
BZ technique the exact general solutions of the vacuum gravitational field 
equations can be found by straightforward integration; in the general solutions 
there are three arbitrary functions. A special solution with solitonic character in 
the ordinary sense is also given. 

1. I N T R O D U C T I O N  

In view of the fact that it is very difficult to solve the gravitational field 
equations, a technique for generating a new solution from a known one is quite 
important. Among the techniques for the generation of  solutions developed in 
recent years, the inverse scattering method (ISM) of Belinsky and Zakharov 
(BZ) (1978) is one of the most effective. As long as the space-time manifold 
admits a pair of  commuting Killing vectors, the BZ technique can be used 
to generate exact solutions. A large number of  interesting solutions have 
been found and investigated by use of the BZ technique (Belinsky and 
Zakharov, 1978, 1980; Belinsky and Ruffini, 1980; Car and Verdaguer, 1983; 
Ibanez and Verdaguer, 1985, 1986; Bruckman, 1986). 

Yan and Ge (1987) added a traveling-wave condition to the condition 
required by the BZ technique in order to obtain soliton solutions which 
possess traveling-wave character, and constructed a class of traveling-wave 
soliton solutions from the general form of the Bondi plane-wave metric which 
serves as a "seed" by using the BZ technique. 

Department of Physics, Zhengzhou University, Henan 450052, China. 

1019 
0020-7748/96/0500-1019509.50/0 © 1996 Plenum Publishing Corporation 



1020 M a  

In the present paper we first construct traveling-wave-type two-soliton 
solutions from a still simpler (fiat) "seed" metric by using the BZ technique 
and examine the corresponding curvature; then we point out emphatically 
that under the condition considered by Yan and Ge (1987) the general solutions 
of the vacuum field equations can be obtained by the use of quadrature and 
construct a special solution for which the corresponding curvature possesses 
solitonic behavior. 

2. THE BZ TECHNIQUE 

Let us first briefly describe the BZ technique. If the space-time manifold 
admits two commuting spacelike Killing vectors, the line element can be 
written as 

Putting 

ds 2 = f ( z ,  t ) ( - d t  2 + dg 2) + Yab(Z, t) dx ~ dx  b, a , b =  1,2 (2.1) 

1 1 
= ~ ( Z  + t), n = ~ ( Z -  t) (2.2) 

and defining 

et 2 = Det(y), a~ = - o t y , ~ y  -~, ~ = ay, .qy -1 (2.3) 

where y is a 2 X 2 matrix with %b as its elements and y-1 is the inverse of 
y, we can write the vacuum Einstein equations as follows: 

a~,n + ~,~ = 0 (2.4a) 

(lnf).{ = (In et),~g(ln a),~ + Tr(a~2)/4emq~ (2.4b) 

(In f),~ = (In e0,~/(ln e0.n + Tr(~2)/4em% (2.4c) 

In the BZ technique, equation (2.4a) is associated with a linear eigenvalue 
problem: 

2Xa~ ~I~×- s~ ~I~ (2.5a) alt~ k - a  k - a  

2ka.,q ~ x  - ~ ~ (2.5b) ~I~'n + k + a " k + a  

where k is a complex spectral parameter and ~Ir a complex 2 × 2 matrix 
which satisfies 

,,/(~, -q) = xIn(~, ,q; k = 0), qt(k) = xIt(k) (2.6) 
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where a bar on a letter represents the complex  conjugate.  Introducing the 
scattering matrix by 

air = X(~, "q; k)q%, ~(k)  = X(R), lim X(R) = .,~ (2.7) 

with ~I*0 as the solution of  equations (2.5) which corresponds a "seed"  metric 
"/0 in the sense of  (2.6), and carrying out the spectral decomposat ion in the 
complex  k plane, one has 

×(X) = 3~ + ~ gtk_ (2.8) 
k=l k Ix~ 

where 3 ~ is the unitary matrix, and the elements  o f  @~ are defined by 

Z~ ' ~  (F  -I )lkM,:(~ ('Yo)¢.oMIJt) (2.9) (~k)a0 
t=l P-t 

M~ ) = (M0)<ak)(al¢o 1(I~, a~; bt~))ac (2.10) 

M~.k)(,io),.bM~X) 
F~t = _ a2 (2.11) 

Ixkl.zt 

Ixk = o3~ - 13 + [(lok - 13)2 _ oe2]tp-, k = 1, 2 . . . .  (2.12) 

and M~ k), oJk are arbitrary constants; 13 is the harmonic conjugate of  a ,  which 
is defined by 

a = a (O + b('q), 13 = a(~) - b('q) (2.13) 

(Here, note that et~n = 0.) Finally, the new solution is given by 

Y~h = a - "  t*~ ('YoLb - 
k,l= I 

~ (IX~ - txl) 2 
k , l= l ,k> l 

which is the so-called n-soliton solution. 

( !-' - i )tt M ~k~(~/o)c_ ,, M ~ak)(~/o)at, ] 

btkl.zt / 
(2.14a) 

Det(F)  (2.14b) 

3. THE TWO-SOLITON TRAVELING WAVE ON THE FLAT 
BACKGROUND 

In order to obtain traveling wave solutions, Yan and Ge (1987) introduced 
the following traveling-wave condition: 

g ~ ( z ,  t) = g~ (u ) ,  u = z - t = 2"q (3.1) 
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Hereaf ter  we restrict ourse lves  to the t rave l ing-wave  case.  We take the line 
e lement  of  the flat space- t ime 

ds 2 = - d t  2 + dz 2 + //2(d..x2 -'}-- dy 2) (3.2) 

as a "seed"  metric.  Thus,  f rom equations (2.3) we have fo = 1, Yo = u25~, 
= u 2, a/o = 0, and ~ o  = 4u5~. Substi tut ing these results into (2.5) and 

solving, we obtain 

q%(u; h) = (u 2 - h),~ (3.3a) 

From equation (2.12) it is easily seen that 

Ixk = tot + u 2 + (to~. + 2o~kuZ) 1/2 (3.4a) 

and 

t t  2 - -  1.1, k = ( 2 t O k ~ k )  I/2 (3.4b) 

The  combina t ion  of  (3.4a) with (3.4b) gives  

ll*'o(U; btk) = (2tOkl.Zk)ll2~ (3.3b) 

When  we consider  the real pole trajectories and the case where  n = 2, we have 

r n ] l ) -  c~l 1) m ] 2 ) -  C] 2) m~}}-  C~ 1) m ~ 2 ) -  c~ 2) 

, / - ; ,  ' " , / 7 '  " 
(3.5) 

[ ( c l~ )  2 + ¢cSJ~)2]u 2 
Fit = t*t(1*{ - u 4) (3.6a) 

(c9~cl 2~ + 4'~ct2>)u 2 
1"12 = 1"21 = (3.6b) 

(~l  ~2)1/2(1~1 ~z - u 4) 

[(42>) 2 + (c~2~)21u 2 
1"22 = ta,2(i,22 _ u4 ) (3.6C) 

where  c~ ) = (m0)~kl/(2tOk) 1/2. 
Now we consider  separately the two special cases for simplicity.  

Case  1. cl k) = c~ kl = ct. In this case we have 

Fit 

rn/i } = m ~ l ) _  Cl m12) = m~Z ) = C2 

2c{u 2 2ClC2tt 2 
I~L(i.Z{ -- u4) ' 1"12 = I'21 = (~.LI~LZ)I/2(~I[.L2 --  U4) ' 1-'22 - -  

2c2u 2 

~L2(~£2 2 - -  U 4) 
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The  new solutions are 

_ _  U 6 ) 1 {l,z~t.z2 + 

1 [ ~,.__~2 /,/6 

J 

(3.7a) 

(3.7b) 

4 ( , / - ~  + V/~2)2I.LII.L2b/4 

f = ([,LII.L 2 - -  / /4 )2(0 j  1 q-  2/t2)1/2({.02 -'1- 2tt2) 112 (3.7c) 

where we have determined that 

c = 4 ~ (  ~ + "f~2)2 
(ctc2) 2 

by the requirement  that lim,__,~ f = 1. 

Case  2. cl k) = 0, c~ k) = ~,. Now, we have that 

mt 1) = ml 2) = O, m~l) _ Cl m~2) = c2 
" - , / G 2  

CTU" Cl C2 u2 
F I !  - -  ~LI(~.L/ _ /,/4), F,2 = ['21 ([..LI[.L2)U2(j&I}~2 - -  U4 ) ,  

c iu-  
F22 = g '2 (D~ - -  //4) 

The  new solutions read as follows: 

(3.8) 

~.L 1 ill"2 /,16 Yt~ - "/22 -- , %2 = ~/21 = 0 (3.9a) 
ll2 ' [&l [.L 2 

f = 4 (,/-~1 + ,~2)2~l tx2u 4 (3.9b) 
(i.tl~2 -- u4)2(oh + 2u2)t;2(to2 + 2U2) In 

Similarly, the constant c has been replaced by 

(?,~2) 2 

It is well known that it is the curvature tensor that really indicates the 
existence o f  the gravitational field. In the geodesic deviation equations 

d28x i 
dt 2 - RiojoSX j (3.1 1) 
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Rbjo corresponds to the tidal force. It is such a kind of  force that one desires 
to detect in the search for gravitational waves. Therefore, we give R~/o. The 
nonzero components for case 1 are 

1 1 ") 
Rf i t0  = u2( i . z  t + /,/2)3(13, 2 _]_ b/Z) 3 [9U 12 + (~1 + ~1"2) u l 0  - -  (~ 1'2 Jr- [.JL 2 q- 91.t, lla,2)u 8 

9 2 "~ + i.t, lP,2(ll ,  f + ~2 + 9[tl, ll.l~2)U 4 _ 4tXLIX~(IX t + ]A,2)U 2 _ 9t.1,1tl,2 ] 3  3 

(3.12) 

and for case 2, 

6 
: = [/d 12 - -  (~I, 2 4- t.L 2 -}- I&llJt,2)/28 2R22° - 2 e l l °  /22(~ I -I-- /22)3(I.L 2 -t-- u2) 3 

+ Ix,lx2(Ix~ + txz z + IxltXz)U' - Ix~lx 3] (3.13) 

It can be seen that both tRgt0 and 2R~2 o go to infinity as /2 tends zero and 
vice versa. The two cases represent two distinguishable polarizations of the 
gravitational wave. 

4. THE GENERAL SOLUTION AND A CLASS OF n - S O L I T O N  
S P E C I A L  S O L U T I O N S  

The BZ method is a very effective way of generating a new solution 
from an old one. The new solution is called the soliton solution only because 
the soliton technique is used to find it, while the new solution does not 
necessarily have the features of  the classical soliton, as remarked by Ibanez 
and Verdaguer (1985). When we reexamine the field equations (2.4a)-(2.4c) 
with the traveling-wave condition (3.1), the discussion of  Section 3 might 
appear somewhat pedantic. Under the condition (3.1), equations (2.4a) and 
(2.4b) become identities and equation (2.4c) becomes 

(ln ~)" Tr (~  2) 
(In f ) '  - - -  + -  (4.1) 

(In a ) '  16aa '  

where the prime denotes differentiation with respect to u. Straightforward 
integrating gives the general solution of  (4.1): 

( ) ( f ~li'"122-('Y~e)Zdu) (4.2) 
f =  c ~/'Yll~2z -- (Ytz) / exp - ("YlI"Y22 (~12) 2) 

where c is a constant and 3'tl, "/z2, and ~/12 are arbitrary functions. 
Now we want to construct a kind of special solution with physically 

solitonic behavior. As mentioned above, the curvature tensor characterizes 
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the gravitational field; its tetrad components are measurable. Hence, we 
choose ~,~ j, "/22, and "¢~2 so that the tetrad components R~j 0 take the n-soliton 
form. For this purpose, we choose 

'YI2 : 0 ,  "YII : cv-l+'/3, ~22 = a t- 'Ii  (4.3) 

where a is to be determined. Then we have 

f = coLo~' 

The nonzero components of R~jo are 

(4.4) 

R~,o  = - R~2o - x/c3 0L' 2 2 e~ 2 (4.5) 

Introducing the tetrad 

tO~o = ((c~oL') "z, O, O, 0), 

to~ = (0, O, a Jgn, 0), 

we find the corresponding tetrad components 

i V/3O~ ' 
R(~i6 - 2cc~ 3 

If we want R~io to take the n-soliton form 

to~ = (0, a - ~ n ,  0, 0) 

~4 ~ = (0, 0, 0, ( caa ' )  ~n) 

ROiO - A sech2(u - k3) 
k=l 

(4.6) 

we only need to put 

(4.7) 

(4.8) 

(4.9) 

To sum up, if the space-time manifold admits two commuting spacelike 
Killing vectors and satisfies the so-called traveling-wave condition, the exact 
general solution of the vacuum field equations can be found by straightforward 
integration; there are three free functions in it. A special solution with a 
form involving the n-soliton can be constructed by choosing suitably those 
free functions. 
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